Enzymatic Evidence for a Complete Oxidative Pentose Phosphate Pathway in Chloroplasts and an Incomplete Pathway in the Cytosol of Spinach Leaves.

نویسندگان

  • C. Schnarrenberger
  • A. Flechner
  • W. Martin
چکیده

The intracellular localization of transaldolase, transketolase, ribose-5-phosphate isomerase, and ribulose-5-phosphate epimerase was reexamined in spinach (Spinacia oleracea L.) leaves. We found highly predominant if not exclusive localization of these enzyme activities in chloroplasts isolated by isopyknic centrifugation in sucrose gradients. Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glucose phosphate isomerase, and triose phosphate isomerase activity was present in the chloroplast fraction but showed additional activity in the cytosol (supernatant) fraction attributable to the cytosol-specific isoforms known to exist for these enzymes. Anion-exchange chromatography of proteins of crude extracts on diethylaminoethyl-Fractogel revealed only a single enzyme each for transaldolase, transketolase, ribose-5-phosphate isomerase, and ribulose-5-phosphate epimerase. The data indicate that chloroplasts of spinach leaf cells possess the complete complement of enzymes of the oxidative pentose phosphate path-way (OPPP), whereas the cytosol contains only the first two reactions, contrary to the widely held view that plants generally possess a cytosolic OPPP capable of cyclic function. The chloroplast enzymes transketolase, ribose-5-phosphate isomerase, and ribulose-5-phosphate epimerase appear to be amphibolic for the Calvin cycle and OPPP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification and cloning of chloroplast 6-phosphogluconate dehydrogenase from spinach. Cyanobacterial genes for chloroplast and cytosolic isoenzymes encoded in eukaryotic chromosomes.

Previous attempts to purify chloroplast 6-phosphogluconate dehydrogenase (cp6PGDH), a key enzyme of the oxidative pentose phosphate pathway, have been unsuccessful due to rapid activity loss. An efficient purification protocol was developed and the enzyme from spinach leaves was purified 1000-fold to apparent homogeneity with a specific activity of 60 U.mg-1. The enzyme is a homodimer with subu...

متن کامل

Physiological rates of starch breakdown in isolated intact spinach chloroplasts.

Starch breakdown with rates above 10 muatom carbon per mg chlorophyll per hour has been monitored in spinach chloroplasts and compares favorably with the rates in whole leaves. Intact starch-loaded chloroplasts were prepared from protoplasts to avoid rupture during mechanical homogenization and rapid centrifugation. Particular attention was paid to the identification of all the products of star...

متن کامل

Interaction of cytosolic and plastidic nitrogen metabolism in plants.

In angiosperms, the assimilation of ammonia resulting from nitrate reduction and from photorespiration depends on the operation of the plastidic GS/GOGAT cycle. The precursor for ammonia assimilation, 2-oxoglutarate, is synthesized in the mitochondria and in the cytosol. It is imported into the plastid by a 2-oxoglutarate/malate translocator (DiT1). In turn, the product of ammonia assimilation,...

متن کامل

Diatom plastids possess a phosphoribulokinase with an altered regulation and no oxidative pentose phosphate pathway.

The chloroplast enzyme phosphoribulokinase (PRK; EC 2.7.1.19) is part of the Calvin cycle (reductive pentose phosphate pathway) responsible for CO(2) fixation in photosynthetic organisms. In green algae and vascular plants, this enzyme is light regulated via reversible reduction by reduced thioredoxin. We have sequenced and characterized the gene of the PRK from the marine diatom Odontella sine...

متن کامل

The Mechanism of Pentose Phosphate Conversion to Hexose Monophosphate

Evidence for the conversion of pentose phosphate to hexose monophosphate via sedoheptulose phosphate has been obtained with extracts of rat liver (1) and spinach leaves (2). It has been demonstrated that sedoheptulose phosphate is formed from pentose phosphate by the action of the enzyme transketolase (3) and that hexose monophosphate is formed from sedoheptulose phosphate by the enzyme transal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 108 2  شماره 

صفحات  -

تاریخ انتشار 1995